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1 Introduction

One of the most difficult problems in constraint solving comes [rom disjunctive constraints. Several techniques
have been proposed by the Artificial Intelligence community to deal with this kind of constraints. Because
of its theoretical and practical interest, manipulation of disjunctive counstraints in Constraint Satisfaction
Problems (CSP) is a hot research topic [13, -4, 16]. In this work we present an approach for systematic
manipulation of disjunctive constraints when verifying local consistency. We first propose to decompose
a set of constraints in two subproblems, the first one with all the elementary constraints and the second
one with all the disjunctive constraints. Then we apply a graph decomposition algorithm on the second
subproblem in order to obtain several sets of disjunctive constraints whose set of variables are disjoints. We
verify local consistency for each subproblem and the results, elimination of impossible values for the variables,
are communicated through membership constraints. The algorithm stops when there are no more changes in
the membership constraints. We prove that if we can decompose the set of disjunctive constraints in at least
two subproblems we can do better than the existing approaches, like choice point. We have implemented
these ideas in a prototype for solving CSP and we have carried out soine simple benchmarks to validate this
theoretical result. We have realised that this general approach to manipulate CSP fits very well in the case
of scheduling problems, one of the most successful applications of constraint progranuning [3]. This paper
is organised as follows. Section 2 presents CSP, its definition and a brief description of techniques used to
solve them. Section 3 introduces disjunctive constraints and presents different approaches used by the CSP
community to deal with them. In section 4 we present our approach in detail. Finally. in section 5 we
conclude the paper.

2 CSP

In this section we present a forinal definition of CSP and briefly describe techniques used to solve them. More
details can be found in [2].

2.1 Definitions

An elementary constraint ¢’ is an atomic formula built on a signature £ = (F,P), where F is a set of
ranked function symbols and P a set of ranked predicate symbols. and a denumerable set .V of variable
symbols '. Elementary constraints are combined with usual first-order connectives. We denote the set of
constraints built from ¥ and .¥ by C(Z,.V). Given a structure D = (D.[), where [ is an interpretation
function and D the domain of this interpretation, a (.., D)-CSP is any set C' = (¢; A ...Ac.) such that
el €C(T,.¥)Vi=1,...,n. A solution of ¢’ is a mapping from .¥ to D that associates to each variable r € .Y
an element in D such that ¢’ is satisfiable in D. A solution of C is a mapping such that all constraints cieC
are satisfiable in D. Given a variable r € .Y and a non-empty set D, C D, the membership constraint of x
is a relation given by x €” D,. We use these membership constraints to make explicit the domain reduction
process during the constraint solving. In practice, the sets D, have to be set up to D at the beginning of
the constraint solving process, and constraint propagation will eventually reduce them. As all first-order
connectives can be expressed in terms of conjunctions and disjunctions we consider the set of constraints C'
as follows

C= N\ (e Do)A N N\l ve))

re¥ iefl jeJ

! For clarity, constraints are syntactically distinguished from {ormulae by a question mark exponent on their predicate symbols.
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where I is the set of elementary constraints and J the set of disjunctive counstraints. For simplicity reason
we will only consider disjunctive constraints as disjunctions of only two elementary constraints. We use e,
n, and a to denote the number of constraints, the number of variables and the size of the variable's domain,
respectively. in a CSP. and we also denote by Vur(¢”) the set of variables in a constraint ¢’. In this work we
only consider Binary CSP, i.e.. problems where at most two variables are involved in each constraint 2.

2.2 Solving CSP

Typical tasks defined in connection with CSP are to determine whether a solution exists, and to find one or
all the solutions. In this section we present three categories of techniques used in processing CSP: Searching
Techniques, Problem Reduction, and Hybrid Techniques. Kumar's work [7] is an excellent survey on this
topic.

Searching Techniques in CSP  Searching consists of techniques for systematic exploration of the space
of all solutions. The simplest force brute algorithm generate-and-test, also called trial-and-error search, is
based on the idea of testing every possible combination of values to obtain a solution of a CSP. This generate-
and-test algorithm is correct but it faces an obvious combinatorial explosion. Intending to avoid that poor
performance the basic algorithm commonly used for solving CSPs is the simple backtracking search algorithm,
also called standard backtracking or depth-first search with chronological backtracking, which is a general search
strategy that has been widely used in problem solving. Although backtracking is much better than generate
and test, one almost always can observe pathological behaviour. Bobrow and Raphael have called this class
of behaviour thrashing [1]. Thrashing can be defined as the repeated exploration of subtrees of the backtrack
search tree that differ only in inessential features, such as the assignments to variables irrelevant to the failure
of the subtrees. The time complexity of backtracking is O(a"e), i.e., the time taken to find a solution tends
to be exponential in the number of variables [9]. In order to avoid the resolution of this kind of complex
problem, the notion of problem reduction has been developed.

Problem Reduction in CSP  Problem reduction techniques transform a CSP to an equivalent problem
by reducing the values that the variables can take. Problem reduction is often refered to as consistency
maintenance [12]. Consistency concepts have been defined in order to identify in the search space classes of
combinations of values which could not appear together in any set of values satisfving the set of constraints.
Mackworth [3] proposes thiree levels of consistency: node, arc and path-consistency. These names come [rom
the fact that general graphs have been used to represent binary CSP [12]. The most widely used level of
consistency is arc consistency whose definition is the following:

Given the variables z;,r; € U and the constraints c:(.z';).c;(rj),cZ(I;,xj) € C, the arc associated to

?

i (@i, xj) is consistent if

Yo €a} 30’ €na g Solp(z; € Dy, A HED)

= a' € Solp(z; e’ D: A (r;(.r:j) A cz.(a(.r;),;rj)).

A network of constraints is are-consestent it all its ares are consistent. In [10] Mehr and Henderson propose
the algorithm AC-4 whose worst-case time complexity is O(ea®) and they prove irs optimality in terms of
time. .

2 As a disjunction is considered itsell as a constraint we do not allow more than two variables involved in a disjunctive
constraint.
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It is important to realize that the varying forms of consistency algorithms can be seen as approzimation
algorithms, in that they impose necessary but not always sufficient conditious for the existence of a solution
on a CSP, that is why they are often refered to as local consistency algorithms.

Hybrid Techniques As backtracking suffers from thrashing and consistency algorithms can only eliminate
local inconsistencies, hybrid techniques have been developed. In this way we obtain a complete algorithm
that can solve all problems and where thrashing has been reduced. Hybrid techniques integrate constraint
propagation algorithms into backtracking in the following way: whenever a variable is instantiated 3, a
new CSP is created; a constraint propagation algorithm can be applied to remove local inconsistencies of
these new CSPs [17]. Embedding cousistency techniques inside backtracking algorithms is called Hyvbrid
Techniques. A lot of research has been done on algorithms that essentially fit the previous format. In
particular, Nadel [11] empirically compares the performance of the following algorithms: Generate and Test,
Simple Backtracking, Forward Checking, Partial Lookahead, Full Lookahead, and Really Full Lookahead.
These algorithms primarily differ in the degrees of arc consistency performed at the nodes of the search tree.

3 Disjunctive Constraints

The combination of two elementary constraints with a disjunction operator is called a disjunctive constraint.
A lot of combinatorial problems involve this kind of constraints. For example, in scheduling problems these
constraints conie from the fact that several tasks must use the same resource and the limited capacity of that
resource does not allow to perform all tasks at a same time [14]. Let Task;; the start time of task i of job
J and d;; the duration of task i of job J- On a machine performing a simple task at a time, the capacity
constraints enforce the mutual exclusion for each pair of tasks assigned to the same machine. If we consider
task k of jobs ¢ and j, the fact that on machine & job i runs before job j or vice versa can be expressed by
the following disjunctive constraint

T(‘I.S‘/\‘kj 2? Taskg; + dii v Tasky,; Z? Tas/ckj + dkj

In order to perform all tasks using the same resource a sequential order must be established, these
precedence relations that are not known a priori are determinated by the solution to a scheduling problem.
This feature changes the nature of the probleni. and no efficient polynomial algorithm can be exhibited for
solving all problems involving disjunctive constraints. In this section we present some techniques to deal with
disjunctive constraints.

3.1 Choice Point

The first approach used by the Constraint Logic Programming (CLP) community to deal with disjunctive
constraint was to choose one disjunct during the search process, i.e.. an a priori choice is made and one disjunct
13 posted, if the resulting set of constraint is inconsistent then the other disjunct is chosen and posted. This
approach is based on the general idea of backtracking, the search space is not reduce actively but only when
a clause is non deterministically chosen possibly leading to combinatorial explosion. In the worst case 2P
combinations of constraints have to be analysed. where VD stand for the number of disjunctions. So, for
many problems such an approach introduces too many choice points and yields an unsatisfactory performance.

3Variable instantiation is also called !aBelling process.
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3.2 Binary Variables

Another techuique to dead with disjpioactive consirainrs, widely used by e Goerational Research comununity,
is to introduce binary (U, 1) variables [13]. Each of borl values activares one disjunct and deactivates the

other. A constraint ix siid activated if it is triviaily sarisiied for all value combinations of all its variables.
This gives the effect of setring the constraint at a cheice point, but in this case the [abelling routine can
select the variable for labelling at the best point in the search. Considering the disjunctive constraint

B

Paskos > Tasion + s Taskyy > Uity + iy

= ¥

which establishes that on machine & job 7 rins before job j (first disjunct) or job j runs hefore job
(second disjunct). We introduce a binary variable X,; £ {0. 1} in the foilowing way

(i— \'l) x M+ T(l.w’x',,-j > Tusky; + dy;

Nijwx M4+ Tasky; >0 Tusky, + di;

where M is a larze cuongh nuwmber. In this way we have transformed a disjunctive constraint in a
conjunction of two elementary constraints. If X;; = I then the second constraint is active. trivially satisficd,
and the first disjunct will constraint the value of the variables, in other words, job ¢ runs before job j on

machine A.

As soon as a value is assigued 1o the binary variable during the solving process oue disjroct will be entailed
by the set of constraints and the orher one will be used to reduce the variables domain. In the worst case the
labelling process witl try values for the binary variables. using it as a cholee point as in the first approach.

i.e..in the worst case we also have to analyse 2P cases.

3.3 Constructive Disjunction

_—’1 rather new approach is called consrructive disjunction. which lifi s common information from the alternatives
’,] We explain this idea using an example taken frem (5], Consider the following set ol constraints that

Is

nforces the mutual exclusion ot jobs 4 and B on machine 7

"(

Task:y =7 Sq Task: g/ Tuskig +7 S.) Tusk;
(110}
Tusk.p < {i .10}

M

Tishk:

T

The first disjunct constraints Task, € {1.2.3} wd Tuskip €7 {3.9.107. the second disjunct constraints
Taskiy € {3,910} and Tusk:z €7 {1.2.3} Thus independent which alternative will succeed we know that
neither Tuxk:y nor T'I.S‘/n‘.,'; can take the va "19% {t.5.5.7}. The commen informarion that we can dechice
from both alternatives is Task;y £ {1.2.3.2.9.10} and Task;p € {1.2.3.3.9, 10}, the union of the set of
remaining vahies for the variables in enc ‘1 lv\mm r. This is the essence of ronstinetive disjinerion, extract

: . ! R O B

- T T T 3 .- T, e
N i [P AN sitootadts i

COMLOn Ll Pl :
this extra mformation. 1l\ju11( tive constralnts are uwd .uhwl\ w 1tllo|1t a priori <hou es. In the worst case.
if not extra informaricn can be extracted from the ¢ 23 cases.

isjunctions. the labelling process will annlyse
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4 Systematic Manipulation of Disjunctive Constraints

ln this secuion we preseat our appreach for achieving local cousistency in CSP mvolving disjunctive con-
strajurs. The level of loeal consistency most widely used by the CSP cowmmunity. are consistency. can be
achieved 1 a polvnomial time tor wvser of »lementary constraints. but when we consider disjunctive constraints
the problem beconmes harder. The general iden we propose is to decompose a problemn in two subproblemns,
the first one with all the elementary constraints and the second one with all the disjunctive constraints.
Local consistency can be achieved =ffictently for the first subproblem, and the second subproblem is used to
extract exera imnformation sing a constructive disjunction approach. As hoth subproblems shave variables,
information about values of variables must be communicated, that is done through the use of membership
constraints. Figure 1 preseuts the general schema considering the set of constrainrs in the form that we
explain i section 2.

Coordinaiion

P
N

Solvertor - 7 Sobherfor

Elementary Constraings Disjunctive Constraints \
S : 507 4

~
\\ R / AN /\ TVl

g T~

Figure 10 Gegeral schema e maaipulating the ser ol consteaints

Bt as verifving local o oansistensy for a ser of disjunctive constrainds is 2 hard problem, we propose
ro decornpese the set of dispunetive ostraint: as uch as pessible. o order to do that we use a graph

decomposition algorithm which will derect the nuutimum nuimber of subproblems whose set of variables are

Aisjeints. In this way we deal with aser af easier problems. and the added cost is not significative since the
decompositien aloorirhin hs o Huear fime complexity, Fiaure 2 prosents the refined general schema.

Cowrdinati \
-oordatien

\\»
A

I AR N A ¢

/" - S.v’;er.‘hr ‘\.‘\

Disjuneine C

SVARS

Figura 2: Refined general schema

Once we apply the graph decompesition alzerithm on the set of disjunctive constraints we obtain 1/
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subsets

and suc’ that

Vie L ie i kFI= Var(el) UV are2)V 0 War(el;)) U Var(e2;)) = ¥

= g g

In the diagram of figure 2 the coordination level is in charge ol decompoese the set ol disjunctive coustraints
and add the adequate member  p constraints coming from the subproblem with elementary constraines. In
the same way. the coordination level send to this subproblem the resulis obtained from the =et of disjunctive
constraints. Local consistency is verified for each subproblent and the results are commmunicated through
the membership constraints. the algorithm srops when there is no more changes in the set of membership
constraints. For clarity reasons we express the sets of elementary and disjunctive constraints n the following

way
G= A
=y
€y = /\ [y
= N
where
() = /\,. YooY
Jed.
These ideas are exprossed G he Sl owin g oloorinhon

1 begin

2 Get 7 and O from the ser Gl consteaings
3 repeat

4 Vierify Tocal consistency for O

5 Decompuose €75 as /\l:, VAN

6 for each "y, do
T Verify local consistency using a comstrnerive disjunction appro

& it one of the constrainis. o1 an! .'J for = 0sd e assocbai-ed membersiup constraines thea
9 Eliminate the disjunctive « traint from

10 Add the other elementary constraint to ()

11 end df

12 cud_do
Lsoumrdl Phee sev ol menders s o
11 end

Dot s s et oo

Theorem 1 The algorilun e rmrates and i is correct.
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Proof: Termination of local consistency algorithms is well known, so we only have to prove the termination
of the loop Repeat. In the worst case. after verification of focal consistency for ail Chy,, the resulting
wembership constraints will be different because only oie element has been eliminated. as we have at most
n variables in the set of disjnnetive constraints and cach variable can take a values. the maximal number

of iterations s (an). so at most after (an) iterations the alg

srithim will terminate. Correctness is evident

because we only eliminate values when they are locally inconsistent, so we do not eliminate any solution.

Theovewm 2 If we can decompose a sct of constraints in M subgraphs the worst vase time complerity of our

D—M+1 !

algordhm is bounded by 12 where N D s the tolal number of disjunctive constiaints.

Proof: It ND;:i = 1. 3 denotes the number of disjunctive consteaints in the subgraph 7. in each itera-
. . . Moo\ .. : . ) - M -
tion we have to verify local consistency for 3 i, 2P+ sets of disjunctive constraints. As N D = > i ND;,

M SN AN /D) — . . . o\
we have Y75, 2V A 2VP =M e worst case M = 1. so the worst case tine complexity is O(2VP),
the same result as the choice point approach.

Evidently the use of our approach depends on the specific characteristics of the problem. First. the
more we can decompese the set of disjunctive constraints the more efficient will be the use of constructive
disjunction because we will deal with easier problems (rhis is the meaning of the exprossion 1/2VP -+
Second. the benefits of using constructive disjunction Jepend on the extra information we can extract [romn
the disjunctions, so the more restricted are the constrainrs the more information we can extract from then,
i.e., more impossible values will be eliminated. That is why our approach must be seen as a preprocessing
step. alter that another technique should to be used, such as choice point. for example.

In [3] we have applied our approach to sclve job-shop problems where the general idea of decompose a
set of disjunctive constraints correspond to manipulate as a whole the constraints related to a particular
machine but independently for different machines. so for probiems involving 1/ machines we are sure rhar
we can decompoese the st of disjunctive constrains i M subproblems.

Finally. it is important to note that our approach can be naturally implemented using several solvers in
pacallel for verifying locid consisteney for the sers of disjirctives consirints.

4.1 Examples

Two advantages of the approach presented in this work with respect to the choice point can be better
understood in the following examples. We consider the foilowing probion:

<L) (1
y < 12)
) _\' I (5
>0 v oo § 5 ()
Y ,_> 2y oy < T (5)
: Z“ Py 8]
roys & L it ()

Constraints 1, 2 and 3 correspond to elementary constraints. constraints 1, 3 and 6 correspond to disjunc-

tive constraints. If we verify locad consistoney for the set of olementary constraints we olstain the modified

membership constiaints v £ [0, 3]y 2 [ 4l and = €7 [2.3]. Applving a decomposition algorithm on

94




the set of digjunctive constraints -1 - 6 we obtain three subproblem. so we verify local consistency for each of
rhen nsiog 2 coustructive dispnnetion approach.

e \'orif}'ing loval ronsistency for rhe disjunet 1\“ cu nstrlmt 1 and the associated membership coustraint
S 0.3l we sniam e 0 (F 5] aud

a constriuctive disjunction approach is r £ (0, A.,.q. n is unchangl.

I.U\ " . So. the l'(“ylh‘iil"‘ e be 1\1111) ‘onstraint l!\lll

he disjunctive constraint 5 and the associated membership constraint

o Verifying local t“(‘~11\'i<rc'1v‘f for 1
y e [1 4 we obiain y 27 204 and y € [, 4] So. the resulting membership constraing is
ye o tlis unc.lamgr"tl.

o Veriiving local consistency for the disjunctive coustraint 6 and the associated membership constraint
2 - -~ ) . o - . .
: € [2....5], the first Branch has no solution and the second one = € [4....3]. So, the resulting

wmenthership constraint < - = 7L 50

But. as additional information we know that only one disjunct is possible in the third diijlmction We
can post the second disjunct of the third disjunctive censtraint {vonstraint 8). the only possible alternati
in that disjunction, as an elementary constraint. eliminate that disjunctive constraint, and verily again u,w;\i
m')nsisten«'j; or the set of elementary constraints.

Another interesting sitnation ocenrs if we replace the third disjuncrive constramt {constraint 6 by the

following:

s>y o<

When we verthy loeal consisteney for this constraint and the membership constraint = € [1....5] both
dlsjnnet are im:on\i\twnt with the nwembership constraint. so no value remains possible for the varia ble 7 and

S the protienn bas noo<chis e s dnerosting toonote that this i parion conld have been also detecioed

Sovown that the I]l,”}‘.h(,’f A Jenves visited Dy thao approach depend

i
e
Bt

s

sing a chetee poinr :1]:’;;1‘«;:1«}:. S
cn the order of the input of the constraints. however the performance of our approach does not depeud on
“het order, T we create the ol fee peints posting the disjunctive constraints in the order L5 and 6 we will
that e problem has no selution, b if we create the choice points posting firstly
2 leaves to verify that the problem has no solution.
the search space and also eliminate seme disjunctive

visit ¥ jeaves before detect
the third disjunctive constraint we have to visit only
VWe can soe bhow onr appreach ailows to peduce

CONSTEUNT S,

4.2 Implementation

1

sneral. weoare interested in ~olving CSPousing computarional systen:s. a IS
S We have impl«'nwmvd a protetype of a solver for €SP which is cur-

eal framework imregrat-

ing rewrite rules and strategies 13
rently exsourablo in the systert ELAN 78] an inrerproter of compntationnl systems”. We have integrated
in this prototype the ideas presented in rhis work as a preprocessing phase that carries out local con-
sisteney verlifeation. Onece we have decomipesed the set of disjnnetive constraits in several subprob-
A solver Foroeach st peoblem i oceder o verily loond consistency in paenllels in this way we

A detadls abont the prototype can be ebrained ai

loms we i
fully

atzp://www.loria.fr/ castro, !

“To veriiy local consistency for these subproblems s use a cholee point approach that generates two branchs, each one for

cach disjuner.
SELAN is availakle via ancnrov s Dipoar frp.loria.frin rhe divectory /pub/loria/protheo/sofrwaras/Elan. Farrher

/waw.loria.fr/squipe/protheo.html/PROJECTS/ELAT/ elan html

information can be obtained at htep:
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5

We

Conclusion

have presented an appioach to deal svstematicallv swith disjunctive constrainis in CSP when verifying
< < 8 - bl

local consistency. We have shown how this approach can eventually reduce the search space and eliminate
some disjunctions. We have proved that when we can decompose the set of disjunctive constraints we can
do better than the existing approaches. like choice point. In real life problems, like scheduling. it is often
possible to decompose the set of disjunctive constraints. so we think that our approach can be an interesting

contribution for practical applications of ('SP techniques. As fuiure work we are interested in to estimate

the benefits of apply this approach in terms of parameters of the set of constrs

ints and we are also interested

in to integrate these ideas in the search process.
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